EconPapers    
Economics at your fingertips  
 

Unraveling the Complexity of Inverting the Sturm–Liouville Boundary Value Problem to Its Canonical Form

Natanael Karjanto () and Peter Sadhani
Additional contact information
Natanael Karjanto: Department of Mathematics, University College, Natural Science Campus, Sungkyunkwan University, Suwon 16419, Republic of Korea
Peter Sadhani: Department of Computer Science, University of Oxford, Oxford OX1 2JD, UK

Mathematics, 2024, vol. 12, issue 9, 1-34

Abstract: The Sturm–Liouville boundary value problem (SLBVP) stands as a fundamental cornerstone in the realm of mathematical analysis and physical modeling. Also known as the Sturm–Liouville problem (SLP), this paper explores the intricacies of this classical problem, particularly the relationship between its canonical and Liouville normal (Schrödinger) forms. While the conversion from the canonical to Schrödinger form using Liouville’s transformation is well known in the literature, the inverse transformation seems to be neglected. Our study attempts to fill this gap by investigating the inverse of Liouville’s transformation, that is, given any SLP in the Schrödinger form with some invariant function, we seek the SLP in its canonical form. By closely examining the second Paine–de Hoog–Anderson (PdHA) problem, we argue that retrieving the SLP in its canonical form can be notoriously difficult and can even be impossible to achieve in its exact form. Finding the inverse relationship between the two independent variables seems to be the main obstacle. We confirm this claim by considering four different scenarios, depending on the potential and density functions that appear in the corresponding invariant function. In the second PdHA problem, this invariant function takes a reciprocal quadratic binomial form. In some cases, the inverse Liouville transformation produces an exact expression for the SLP in its canonical form. In other situations, however, while an exact canonical form is not possible to obtain, we successfully derived the SLP in its canonical form asymptotically.

Keywords: Sturm–Liouville boundary value problem; Liouville’s transformation; canonical form; Liouville normal (Schrödinger) form; invariant function; PdHA (Paine) problem; asymptotic expansion (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/9/1329/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/9/1329/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:9:p:1329-:d:1384124

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1329-:d:1384124