EconPapers    
Economics at your fingertips  
 

Hierarchical Symmetry-Breaking Model for Stem Cell Differentiation

Nikolaos K. Voulgarakis ()
Additional contact information
Nikolaos K. Voulgarakis: Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA

Mathematics, 2024, vol. 12, issue 9, 1-15

Abstract: Waddington envisioned stem cell differentiation as a marble rolling down a hill, passing through hierarchically branched valleys representing the cell’s temporal state. The terminal valleys at the bottom of the hill indicate the possible committed cells of the multicellular organism. Although originally proposed as a metaphor, Waddington’s hypothesis establishes the fundamental principles for characterizing the differentiation process as a dynamic system: the generated equilibrium points must exhibit hierarchical branching, robustness to perturbations (homeorhesis), and produce the appropriate number of cells for each cell type. This article aims to capture these characteristics using a mathematical model based on two fundamental hypotheses. First, it is assumed that the gene regulatory network consists of hierarchically coupled subnetworks of genes (modules), each modeled as a dynamical system exhibiting supercritical pitchfork or cusp bifurcation. Second, the gene modules are spatiotemporally regulated by feedback mechanisms originating from epigenetic factors. Analytical and numerical results show that the proposed model exhibits self-organized multistability with hierarchical branching. Moreover, these branches of equilibrium points are robust to perturbations, and the number of different cells produced can be determined by the system parameters.

Keywords: cell differentiation; pitchfork bifurcations; cusp bifurcation; symmetry breaking; self-organized multistability; normal forms; bifurcation theory (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/9/1380/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/9/1380/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:9:p:1380-:d:1387278

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1380-:d:1387278