EconPapers    
Economics at your fingertips  
 

Enhanced Small Reflections Sparse-Spike Seismic Inversion with Iterative Hybrid Thresholding Algorithm

Yue Feng, Ronghuo Dai () and Zidan Fan
Additional contact information
Yue Feng: School of Mathematics and Information, China West Normal University, Nanchong 637009, China
Ronghuo Dai: School of Mathematics and Information, China West Normal University, Nanchong 637009, China
Zidan Fan: School of Mathematics and Information, China West Normal University, Nanchong 637009, China

Mathematics, 2024, vol. 13, issue 1, 1-15

Abstract: Seismic inversion is a process of imaging or predicting the spatial and physical properties of underground strata. The most commonly used one is sparse-spike seismic inversion with sparse regularization. There are many effective methods to solve sparse regularization, such as L0-norm, L1-norm, weighted L1-norm, etc. This paper studies the sparse-spike inversion with L0-norm. It is usually solved by the iterative hard thresholding algorithm (IHTA) or its faster variants. However, hard thresholding algorithms often lead to a sharp increase or numerical oscillation of the residual, which will affect the inversion results. In order to deal with this issue, this paper attempts the idea of the relaxed optimal thresholding algorithm (ROTA). In the solution process, due to the particularity of the sparse constraints in this convex relaxation model, this model can be considered as a L1-norm problem when dealt with the location of non-zero elements. We use a modified iterative soft thresholding algorithm (MISTA) to solve it. Hence, it forms a new algorithm called the iterative hybrid thresholding algorithm (IHyTA), which combines IHTA and MISTA. The synthetic and real seismic data tests show that, compared with IHTA, the results of IHyTA are more accurate with the same SNR. IHyTA improves the noise resistance.

Keywords: sparse regularization; iterative hybrid thresholding; optimal thresholding; L0-norm; sparse spike inversion (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/1/37/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/1/37/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2024:i:1:p:37-:d:1553862

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:37-:d:1553862