EconPapers    
Economics at your fingertips  
 

An Analytical Solution for the Steady Seepage of Localized Line Leakage in Tunnels

Jun Yu, Chi Zhang and Dongkai Li ()
Additional contact information
Jun Yu: School of Civil Engineering, Central South University, Changsha 410075, China
Chi Zhang: School of Civil Engineering, Central South University, Changsha 410075, China
Dongkai Li: Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China

Mathematics, 2024, vol. 13, issue 1, 1-23

Abstract: This paper proposes an analytical solution for the seepage field when a localized line leakage occurs in a tunnel by accurately considering the boundary conditions at the leakage site, which overcomes the problem of current methods, such as the equivalent method or methods improving on the existing analytical solution for fully drained tunnels, being unable to give an accurate analytical solution. First, the semi-infinite seepage region is converted into a rectangular seepage region using two conformal transformations. Subsequently, in order to accurately consider the boundary conditions at the leakage site, the rectangular seepage region with a discontinuous boundary is divided into three subregions with continuous boundaries, and the water head solution for each subregion is given by using the separated variable method. Finally, the principle of orthogonality of trigonometric functions is specially adopted to construct a non-homogeneous system of equations to solve the unknowns in the analytical solution, and through the inverse transformation of the conformal transformation, an analytical solution for the steady-state seepage field when localized line leakage occurs in a tunnel is obtained. The solution proposed is verified by its satisfactory agreement with the numerical simulation results and existing experimental results, and is much more accurate than the existing analytical solution. In addition, the proposed analytical solution is much less computationally demanding compared to numerical simulations. Finally, the capability of the proposed analytical solution is demonstrated by a parametric analysis of the tunnel burial depth, leakage location, and leakage width, and some meaningful conclusions are drawn.

Keywords: localized leakage tunnels; steady seepage field; analytical solution; leakage location; pore water pressure; seepage volume (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/1/82/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/1/82/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2024:i:1:p:82-:d:1555550

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:82-:d:1555550