EconPapers    
Economics at your fingertips  
 

Physics-Informed Neural Networks for the Structural Analysis and Monitoring of Railway Bridges: A Systematic Review

Yuniel Martinez, Luis Rojas (), Alvaro Peña, Matías Valenzuela and Jose Garcia
Additional contact information
Yuniel Martinez: Escuela de Ingeniería de Construcción y Transporte, Pontifica Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Luis Rojas: Escuela de Ingeniería de Construcción y Transporte, Pontifica Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Alvaro Peña: Escuela de Ingeniería de Construcción y Transporte, Pontifica Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Matías Valenzuela: Escuela de Ingeniería de Construcción y Transporte, Pontifica Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Jose Garcia: Escuela de Ingeniería de Construcción y Transporte, Pontifica Universidad Católica de Valparaíso, Valparaíso 2362804, Chile

Mathematics, 2025, vol. 13, issue 10, 1-40

Abstract: Physics-informed neural networks (PINNs) offer a mesh-free approach to solving partial differential equations (PDEs) with embedded physical constraints. Although PINNs have gained traction in various engineering fields, their adoption for railway bridge analysis remains under-explored. To address this gap, a systematic review was conducted across Scopus and Web of Science (2020–2025), filtering records by relevance, journal impact, and language. From an initial pool, 120 articles were selected and categorised into nine thematic clusters that encompass computational frameworks, hybrid integration with conventional solvers, and domain decomposition strategies. Through natural language processing (NLP) and trend mapping, this review evidences a growing but fragmented research landscape. PINNs demonstrate promising capabilities in load distribution modelling, structural health monitoring, and failure prediction, particularly under dynamic train loads on multi-span bridges. However, methodological gaps persist in large-scale simulations, plasticity modelling, and experimental validation. Future work should focus on scalable PINN architectures, refined modelling of inelastic behaviours, and real-time data assimilation, ensuring robustness and generalisability through interdisciplinary collaboration.

Keywords: physics-informed neural networks (PINNs); partial differential equations (PDEs); scientific machine learning; domain decomposition; inverse problems; computational mechanics (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/10/1571/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/10/1571/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:10:p:1571-:d:1652943

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-11
Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1571-:d:1652943