EconPapers    
Economics at your fingertips  
 

Denoising Autoencoder and Contrast Enhancement for RGB and GS Images with Gaussian Noise

Armando Adrián Miranda-González, Alberto Jorge Rosales-Silva (), Dante Mújica-Vargas, Edwards Ernesto Sánchez-Ramírez, Juan Pablo Francisco Posadas-Durán, Dilan Uriostegui-Hernandez, Erick Velázquez-Lozada and Francisco Javier Gallegos-Funes
Additional contact information
Armando Adrián Miranda-González: Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico
Alberto Jorge Rosales-Silva: Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico
Dante Mújica-Vargas: Departamento de Ciencias Computacionales, Tecnológico Nacional de México, Cuernavaca 62490, Mexico
Edwards Ernesto Sánchez-Ramírez: Instituto de Investigación y Desarrollo Tecnológico de la Armada de México, Veracruz 95269, Mexico
Juan Pablo Francisco Posadas-Durán: Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico
Dilan Uriostegui-Hernandez: Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico
Erick Velázquez-Lozada: Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico
Francisco Javier Gallegos-Funes: Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Mexico City 07738, Mexico

Mathematics, 2025, vol. 13, issue 10, 1-27

Abstract: Robust image processing systems require input images that closely resemble real-world scenes. However, external factors, such as adverse environmental conditions or errors in data transmission, can alter the captured image, leading to information loss. These factors may include poor lighting conditions at the time of image capture or the presence of noise, necessitating procedures to restore the data to a representation as close as possible to the real scene. This research project proposes an architecture based on an autoencoder capable of handling both poor lighting conditions and noise in digital images simultaneously, rather than processing them separately. The proposed methodology has been demonstrated to outperform competing techniques specialized in noise reduction or contrast enhancement. This is supported by both objective numerical metrics and visual evaluations using a validation set with varying lighting characteristics. The results indicate that the proposed methodology effectively restores images by improving contrast and reducing noise without requiring separate processing steps.

Keywords: lighting; noise; contrast enhancement; autoencoder (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/10/1621/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/10/1621/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:10:p:1621-:d:1656344

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-07
Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1621-:d:1656344