EconPapers    
Economics at your fingertips  
 

Spin-Wheel: A Fast and Secure Chaotic Encryption System with Data Integrity Detection

Luis D. Espino-Mandujano () and Rogelio Hasimoto-Beltran ()
Additional contact information
Luis D. Espino-Mandujano: Center for Research in Mathematics (CIMAT), Guanajuato 36240, Mexico
Rogelio Hasimoto-Beltran: Center for Research in Mathematics (CIMAT), Guanajuato 36240, Mexico

Mathematics, 2025, vol. 13, issue 11, 1-19

Abstract: The increasing demand for real-time multimedia communications has driven the need for highly secure and computationally efficient encryption schemes. In this work, we present a novel chaos-based encryption system that provides remarkable levels of security and performance. It leverages the benefits of applying fast-to-evaluate chaotic maps, along with a 2-Dimensional Look-Up Table approach (2D-LUT), and simple but powerful periodic perturbations. The foundation of our encryption system is a Pseudo-Random Number Generator (PRNG) that consists of a fully connected random graph with M vertices representing chaotic maps that populate the 2D-LUT. In every iteration of the system, one of the M chaotic maps in the graph and the corresponding trajectories are randomly selected from the 2D-LUT using an emulated spin-wheel picker game. This approach exacerbates the complexity in the event of an attack, since the trajectories may come from the same or totally different maps in a non-sequential time order. We additionally perform two levels of perturbation, at the map and trajectory level. The first perturbation (map level) produces new trajectories that are retrieved from the 2D-LUT in non-sequential order and with different initial conditions. The second perturbation applies a p-point crossover scheme to combine a pair of trajectories retrieved from the 2D-LUT and used in the ciphering process, providing higher levels of security. As a final process in our methodology, we implemented a simple packet-based data integrity scheme that detects with high probability if the received information has been modified (for example, by a man-in-the-middle attack). Our results show that our proposed encryption scheme is robust to common cryptanalysis attacks, providing high levels of security and confidentiality while supporting high processing speeds on the order of gigabits per second. To the best of our knowledge, our chaotic cipher implementation is the fastest reported in the literature.

Keywords: chaotic encryption; look-up table; integrity detection (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/11/1712/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/11/1712/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:11:p:1712-:d:1662678

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-24
Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1712-:d:1662678