EconPapers    
Economics at your fingertips  
 

A Novel Metaheuristic-Based Methodology for Attack Detection in Wireless Communication Networks

Walaa N. Ismail ()
Additional contact information
Walaa N. Ismail: Department of Management Information Systems, College of Business Administration, Al Yamamah University, Riyadh 11512, Saudi Arabia

Mathematics, 2025, vol. 13, issue 11, 1-46

Abstract: The landscape of 5G communication introduces heightened risks from malicious attacks, posing significant threats to network security and availability. The unique characteristics of 5G networks, while enabling advanced communication, present challenges in distinguishing between legitimate and malicious traffic, making it more difficult to detect anonymous traffic. Current methodologies for intrusion detection within 5G communication exhibit limitations in accuracy, efficiency, and adaptability to evolving network conditions. In this study, we explore the application of an adaptive optimized machine learning-based framework to improve intrusion detection system (IDS) performance in wireless network access scenarios. The framework used involves developing a lightweight model based on a convolutional neural network with 11 layers, referred to as CSO-2D-CNN, which demonstrates fast learning rates and excellent generalization capabilities. Additionally, an optimized attention-based XGBoost classifier is utilized to improve model performance by combining the benefits of parallel gradient boosting and attention mechanisms. By focusing on the most relevant features, this attention mechanism makes the model suitable for complex and high-dimensional traffic patterns typical of 5G communication. As in previous approaches, it eliminates the need to manually select features such as entropy, payload size, and opcode sequences. Furthermore, the metaheuristic Cat Swarm Optimization (CSO) algorithm is employed to fine-tune the hyperparameters of both the CSO-2D-CNN and the attention-based XGBoost classifier. Extensive experiments conducted on a recent dataset of network traffic demonstrate that the system can adapt to both binary and multiclass classification tasks for high-dimensional and imbalanced data. The results show a low false-positive rate and a high level of accuracy, with a maximum of 99.97% for multilabel attack detection and 99.99% for binary task classification, validating the effectiveness of the proposed framework in the 5G wireless context.

Keywords: IDS; intrusion detection; cybersecurity; 5G/6G network; swarm optimization; neural network; ML; XGBoost (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/11/1736/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/11/1736/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:11:p:1736-:d:1663604

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-25
Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1736-:d:1663604