EconPapers    
Economics at your fingertips  
 

On the Spectral Radius of the Maximum Degree Matrix of Graphs

Eber Lenes, Luis Medina, María Robbiano and Jonnathan Rodríguez ()
Additional contact information
Eber Lenes: Área de Ciencias Básicas Exactas, Universidad del Sinú, Cartagena 130015, Colombia
Luis Medina: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile
María Robbiano: Departamento de Matemáticas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1249004, Chile
Jonnathan Rodríguez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile

Mathematics, 2025, vol. 13, issue 11, 1-20

Abstract: Let G be a graph with n vertices, and let d G ( u ) denote the degree of vertex u in G . The maximum degree matrix M G of G is the square matrix of order n whose ( u , v ) -entry is equal to max d G ( u ) , d G ( v ) if vertices u and v are adjacent in G , and zero otherwise. Let B p , q , r be the graph obtained from the complete graph K p by removing an edge u v , and identifying vertices u and v with the end vertices u ′ and v ′ of the paths P q and P r , respectively. Let G n , d denote the set of simple, connected graphs with n vertices and diameter d . A graph in G n , d that attains the largest spectral radius of the maximum degree matrix is called a maximizing graph. In this paper, we first characterize the spectrum of the maximum degree matrix for graphs of the form B n − i + 2 , i , d − i , where 1 ≤ i ≤ ⌊ d 2 ⌋ . Furthermore, for d ≥ 2 , we prove that the maximizing graph in G n , d is B n − d + 2 , ⌊ d 2 ⌋ , ⌈ d 2 ⌉ . Finally, if d ≥ 4 is an even integer, then the spectral radius of the maximum degree matrix in B n − d + 2 , ⌊ d 2 ⌋ , ⌈ d 2 ⌉ can be computed as the largest eigenvalue of a symmetric tridiagonal matrix of order d 2 + 1 .

Keywords: diameter; diametral path; internal path; maximum degree matrix; spectral radius (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/11/1769/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/11/1769/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:11:p:1769-:d:1664808

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-29
Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1769-:d:1664808