On the Spectral Radius of the Maximum Degree Matrix of Graphs
Eber Lenes,
Luis Medina,
María Robbiano and
Jonnathan Rodríguez ()
Additional contact information
Eber Lenes: Área de Ciencias Básicas Exactas, Universidad del Sinú, Cartagena 130015, Colombia
Luis Medina: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile
María Robbiano: Departamento de Matemáticas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1249004, Chile
Jonnathan Rodríguez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile
Mathematics, 2025, vol. 13, issue 11, 1-20
Abstract:
Let G be a graph with n vertices, and let d G ( u ) denote the degree of vertex u in G . The maximum degree matrix M G of G is the square matrix of order n whose ( u , v ) -entry is equal to max d G ( u ) , d G ( v ) if vertices u and v are adjacent in G , and zero otherwise. Let B p , q , r be the graph obtained from the complete graph K p by removing an edge u v , and identifying vertices u and v with the end vertices u ′ and v ′ of the paths P q and P r , respectively. Let G n , d denote the set of simple, connected graphs with n vertices and diameter d . A graph in G n , d that attains the largest spectral radius of the maximum degree matrix is called a maximizing graph. In this paper, we first characterize the spectrum of the maximum degree matrix for graphs of the form B n − i + 2 , i , d − i , where 1 ≤ i ≤ ⌊ d 2 ⌋ . Furthermore, for d ≥ 2 , we prove that the maximizing graph in G n , d is B n − d + 2 , ⌊ d 2 ⌋ , ⌈ d 2 ⌉ . Finally, if d ≥ 4 is an even integer, then the spectral radius of the maximum degree matrix in B n − d + 2 , ⌊ d 2 ⌋ , ⌈ d 2 ⌉ can be computed as the largest eigenvalue of a symmetric tridiagonal matrix of order d 2 + 1 .
Keywords: diameter; diametral path; internal path; maximum degree matrix; spectral radius (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/11/1769/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/11/1769/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:11:p:1769-:d:1664808
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().