Binary Chaotic White Shark Optimizer for the Unicost Set Covering Problem
Pablo Zúñiga-Valenzuela,
Broderick Crawford (),
Felipe Cisternas-Caneo,
Eduardo Rodriguez-Tello,
Ricardo Soto,
José Barrera-Garcia and
Fernando Lepe-Silva
Additional contact information
Pablo Zúñiga-Valenzuela: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Broderick Crawford: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Felipe Cisternas-Caneo: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Eduardo Rodriguez-Tello: Cinvestav Unidad Tamaulipas, Km. 5.5 Carretera Victoria-Soto La Marina, Victoria 87130, Tamaulipas, Mexico
Ricardo Soto: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
José Barrera-Garcia: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Fernando Lepe-Silva: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Mathematics, 2025, vol. 13, issue 13, 1-39
Abstract:
The Unicost Set Covering Problem (USCP), an NP-hard combinatorial optimization challenge, demands efficient methods to minimize the number of sets covering a universe. This study introduces a binary White Shark Optimizer (WSO) enhanced with V3 transfer functions, elitist binarization, and chaotic maps. To evaluate algorithm performance, we employ the Relative Percentage Deviation (RPD), which measures the percentage difference between the obtained solutions and optimal values. Our approach achieves outstanding results on six benchmark instances: WSO-ELIT_CIRCLE delivers an RPD of 0.7% for structured instances, while WSO-ELIT_SINU attains an RPD of 0.96% in cyclic instances, showing empirical improvements over standard methods. Experimental results demonstrate that circle chaotic maps excel in structured problems, while sinusoidal maps perform optimally in cyclic instances, with observed improvements up to 7.31% over baseline approaches. Diversity and convergence analyses show structured instances favor exploitation-driven strategies, whereas cyclic instances benefit from adaptive exploration. This work establishes WSO as a robust metaheuristic for USCP, with applications in resource allocation and network design.
Keywords: White Shark Optimizer; chaotic maps; metaheuristics; combinatorial optimization; binarization techniques; exploration–exploitation balance (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/13/2175/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/13/2175/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:13:p:2175-:d:1694042
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().