EconPapers    
Economics at your fingertips  
 

A Hybrid MIL Approach Leveraging Convolution and State-Space Model for Whole-Slide Image Cancer Subtyping

Dehui Bi and Yuqi Zhang ()
Additional contact information
Dehui Bi: College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
Yuqi Zhang: School of Computer Science and Engineering, Beihang University, Beijing 100191, China

Mathematics, 2025, vol. 13, issue 13, 1-20

Abstract: Precise identification of cancer subtypes from whole slide images (WSIs) is pivotal in tailoring patient-specific therapies. Under the weakly supervised multiple instance learning (MIL) paradigm, existing techniques frequently fall short in simultaneously capturing local tissue textures and long-range contextual relationships. To address these challenges, we introduce ConvMixerSSM, a hybrid model that integrates a ConvMixer block for local spatial representation, a state space model (SSM) block for capturing long-range dependencies, and a feature-gated block to enhance informative feature selection. The model was evaluated on the TCGA-NSCLC dataset and the CAMELYON16 dataset for cancer subtyping tasks. Extensive experiments, including comparisons with state-of-the-art MIL methods and ablation studies, were conducted to assess the contribution of each component. ConvMixerSSM achieved an AUC of 97.83%, an ACC of 91.82%, and an F1 score of 91.18%, outperforming existing MIL baselines on the TCGA-NSCLC dataset. The ablation study revealed that each block contributed positively to performance, with the full model showing the most balanced and superior results. Moreover, our visualization results further confirm that ConvMixerSSM can effectively identify tumor regions within WSIs, providing model interpretability and clinical relevance. These findings suggest that ConvMixerSSM has strong potential for advancing computational pathology applications in clinical decision-making.

Keywords: computational pathology; whole slide image; multiple instance learning; state space model; convolutional neural networks (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/13/2178/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/13/2178/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:13:p:2178-:d:1694304

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-04
Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2178-:d:1694304