Fuzzy Graph Hyperoperations and Path-Based Algebraic Structures
Antonios Kalampakas ()
Additional contact information
Antonios Kalampakas: College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
Mathematics, 2025, vol. 13, issue 13, 1-32
Abstract:
This paper introduces a framework of hypercompositional algebra on fuzzy graphs by defining and analyzing fuzzy path-based hyperoperations. Building on the notion of strongest strong paths (paths that are both strength-optimal and composed exclusively of strong edges, where each edge achieves maximum connection strength between its endpoints), we define two operations: a vertex-based fuzzy path hyperoperation and an edge-based variant. These operations generalize classical graph hyperoperations to the fuzzy setting while maintaining compatibility with the underlying topology. We prove that the vertex fuzzy path hyperoperation is associative, forming a fuzzy hypersemigroup, and establish additional properties such as reflexivity and monotonicity with respect to α -cuts. Structural features such as fuzzy strong cut vertices and edges are examined, and a fuzzy distance function is introduced to quantify directional connectivity strength. We define an equivalence relation based on mutual full-strength reachability and construct a quotient fuzzy graph that reflects maximal closed substructures under the vertex fuzzy path hyperoperation. Applications are discussed in domains such as trust networks, biological systems, and uncertainty-aware communications. This work aims to lay the algebraic foundations for further exploration of fuzzy hyperstructures that support modeling, analysis, and decision-making in systems governed by partial and asymmetric relationships.
Keywords: fuzzy graphs; algebraic hyperstructures; graph hyperoperations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/13/2180/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/13/2180/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:13:p:2180-:d:1694341
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().