Newly Formulated General Solutions for the Navier Equation in Linear Elasticity
Chein-Shan Liu and
Chung-Lun Kuo ()
Additional contact information
Chein-Shan Liu: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
Chung-Lun Kuo: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
Mathematics, 2025, vol. 13, issue 15, 1-40
Abstract:
The Navier equations are reformulated to be third-order partial differential equations. New anti-Cauchy-Riemann equations can express a general solution in 2D space for incompressible materials. Based on the third-order solutions in 3D space and the Boussinesq–Galerkin method, a third-order method of fundamental solutions (MFS) is developed. For the 3D Navier equation in linear elasticity, we present three new general solutions, which have appeared in the literature for the first time, to signify the theoretical contributions of the present paper. The first one is in terms of a biharmonic function and a harmonic function. The completeness of the proposed general solution is proven by using the solvability conditions of the equations obtained by equating the proposed general solution to the Boussinesq–Galerkin solution. The second general solution is expressed in terms of a harmonic vector, which is simpler than the Slobodianskii general solution, and the traditional MFS. The main achievement is that the general solution is complete, and the number of harmonic functions, three, is minimal. The third general solution is presented by a harmonic vector and a biharmonic vector, which are subjected to a constraint equation. We derive a specific solution by setting the two vectors in the third general solution as the vectorizations of a single harmonic potential. Hence, we have a simple approach to the Slobodianskii general solution. The applications of the new solutions are demonstrated. Owing to the minimality of the harmonic functions, the resulting bases generated from the new general solution are complete and linearly independent. Numerical instability can be avoided by using the new bases. To explore the efficiency and accuracy of the proposed MFS variant methods, some examples are tested.
Keywords: linear elasticity; Navier equation; new complete general solution; solvability and compatibility conditions; Boussinesq–Galerkin solution; Papkovich–Neuber solution; method of fundamental solutions (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/15/2373/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/15/2373/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:15:p:2373-:d:1709088
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().