Binary Secretary Bird Optimization Algorithm for the Set Covering Problem
Broderick Crawford (),
Felipe Cisternas-Caneo,
Ricardo Soto,
Claudio Patricio Toledo Mac-lean,
José Lara Arce,
Fabián Solís-Piñones,
Gino Astorga and
Giovanni Giachetti
Additional contact information
Broderick Crawford: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Felipe Cisternas-Caneo: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Ricardo Soto: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Claudio Patricio Toledo Mac-lean: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
José Lara Arce: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Fabián Solís-Piñones: Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile
Gino Astorga: Escuela de Negocios Internacionales, Universidad de Valparaíso, Alcalde Prieto Nieto 452, Viña del Mar 2572048, Chile
Giovanni Giachetti: Facultad de Ingeniería, Universidad Andres Bello, Antonio Varas 880, Providencia, Santiago 7591538, Chile
Mathematics, 2025, vol. 13, issue 15, 1-28
Abstract:
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the binary domain of the SCP. In this work, we present a new approach to solve the SCP based on the Secretary Bird Optimization Algorithm (SBOA). This algorithm is inspired by the natural behavior of the secretary bird, known for its ability to hunt prey and evade predators in its environment. Since the SBOA was originally designed for optimization problems in continuous space and the SCP is a binary problem, this paper proposes the implementation of several binarization techniques to adapt the algorithm to the discrete domain. These techniques include eight transfer functions and five different discretization methods. Taken together, these combinations create multiple SBOA adaptations that effectively balance exploration and exploitation, promoting an adequate distribution in the search space. Experimental results applied to the SCP together with its variant Unicost SCP and compared to Grey Wolf Optimizer and Particle Swarm Optimization suggest that the binary version of SBOA is a robust algorithm capable of producing high quality solutions with low computational cost. Given the promising results obtained, it is proposed as future work to focus on complex and large-scale problems as well as to optimize their performance in terms of time and accuracy.
Keywords: combinatorial optimization; metaheuristic; bio-inspired algorithm; secretary bird optimization algorithm; binarization; set covering problem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/15/2482/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/15/2482/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:15:p:2482-:d:1715525
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().