EconPapers    
Economics at your fingertips  
 

Stock Price Prediction Using FinBERT-Enhanced Sentiment with SHAP Explainability and Differential Privacy

Linyan Ruan and Haiwei Jiang ()
Additional contact information
Linyan Ruan: School of International Trade and Economics, Central University of Finance and Economics, Beijing 102206, China
Haiwei Jiang: School of International Trade and Economics, Central University of Finance and Economics, Beijing 102206, China

Mathematics, 2025, vol. 13, issue 17, 1-22

Abstract: Stock price forecasting remains a central challenge in financial modeling due to the non-stationarity, noise, and high dimensionality of market dynamics, as well as the growing importance of unstructured textual information. In this work, we propose a multimodal prediction framework that combines FinBERT-based financial sentiment extraction with technical and statistical indicators to forecast short-term stock price movement. Contextual sentiment signals are derived from financial news headlines using FinBERT, a domain-specific transformer model fine-tuned on annotated financial text. These signals are aggregated and fused with price- and volatility-based features, forming the input to a gradient-boosted decision tree classifier (XGBoost). To ensure interpretability, we employ SHAP (SHapley Additive exPlanations), which decomposes each prediction into additive feature attributions while satisfying game-theoretic fairness axioms. In addition, we integrate differential privacy into the training pipeline to ensure robustness against membership inference attacks and protect proprietary or client-sensitive data. Empirical evaluations across multiple S&P 500 equities from 2018–2023 demonstrate that our FinBERT-enhanced model consistently outperforms both technical-only and lexicon-based sentiment baselines in terms of AUC, F1-score, and simulated trading profitability. SHAP analysis confirms that FinBERT-derived features rank among the most influential predictors. Our findings highlight the complementary value of domain-specific NLP and privacy-preserving machine learning in financial forecasting, offering a principled, interpretable, and deployable solution for real-world quantitative finance applications.

Keywords: machine lrarning; privacy protection; stock prediction (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/17/2747/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/17/2747/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:17:p:2747-:d:1733041

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-04
Handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2747-:d:1733041