EconPapers    
Economics at your fingertips  
 

Small Language Model-Guided Quantile Temporal Difference Learning for Improved IoT Application Placement in Fog Computing

Bhargavi Krishnamurthy () and Sajjan G. Shiva ()
Additional contact information
Bhargavi Krishnamurthy: Department of Computer Science and Engineering, Siddaganga Institute of Technology, Tumakuru 572103, India
Sajjan G. Shiva: Department of Computer Science, University of Memphis, Memphis, TN 38107, USA

Mathematics, 2025, vol. 13, issue 17, 1-20

Abstract: The global market for fog computing is expected to reach USD 6385 million by 2032. Modern enterprises rely on fog computing since it offers computational resources at edge devices through decentralized computation mechanisms. One of the crucial components of fog computing is the proper placement of applications on fog nodes (edge devices, Internet of Things (IoT)) for servicing. Large-scale, geographically distributed fog networks and heterogeneity of fog nodes make application placement a challenging task. Quantile Temporal Difference Learning (QTDL) is a promising distributed form of a reinforcement learning algorithm. It is superior compared to traditional reinforcement learning as it learns the act of prediction based on the full distribution of returns. QTDL is enriched by a small language model (SLM), which results in low inference latency, reduced costs of operation, and also enhanced rates of learning. The SLM, being a lightweight model, has policy-shaping capability, which makes it an ideal choice for the resource-constrained environment of edge devices. The data-driven quantiles of temporal difference learning are blended with the informed heuristics of the SLM to prevent quantile loss and over- or underestimation of the policies. In this paper, a novel SLM-guided QTDL framework is proposed to perform task scheduling among fog nodes. The proposed framework is implemented using the iFogSim simulator by considering both certain and uncertain fog computing environments. Further, the results obtained are validated using expected value analysis. The performance of the proposed framework is found to be satisfactory with respect of the following performance metrics: energy consumption, makespan time violations, budget violations, and load imbalance ratio.

Keywords: fog computing; application placement; quantile temporal difference learning; small language model (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/17/2768/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/17/2768/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:17:p:2768-:d:1736185

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-04
Handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2768-:d:1736185