Volume Dimension of Mass Functions in Complex Networks
Maria del Carmen Soto-Camacho,
Jazmin Susana De la Cruz-Garcia,
Juan Bory-Reyes and
Aldo Ramirez-Arellano ()
Additional contact information
Maria del Carmen Soto-Camacho: Sección de Estudios de Posgrado e Investigación, Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas, Instituto Politécnico Nacional, Mexico City 08400, Mexico
Jazmin Susana De la Cruz-Garcia: Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica (Zacatenco), Instituto Politécnico Nacional, Mexico City 07338, Mexico
Juan Bory-Reyes: Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica (Zacatenco), Instituto Politécnico Nacional, Mexico City 07338, Mexico
Aldo Ramirez-Arellano: Sección de Estudios de Posgrado e Investigación, Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas, Instituto Politécnico Nacional, Mexico City 08400, Mexico
Mathematics, 2025, vol. 13, issue 17, 1-29
Abstract:
A novel definition of volume dimension for a mass function based on a sigmoid asymptote is proposed; in particular, we extend the volume dimension of a mass function to define the volume dimensions for nodes and edges in complex networks. Furthermore, the relationship between the proposed volume dimension and the non-specificity term of the Deng entropy is shown, and the traditional volume dimension and volume dimension based on the node degree in complex networks are revisited. Our experiments show that in both real and synthetic complex networks, the volume dimension tends to follow a sigmoidal asymptote rather than the previously utilized power law asymptote.
Keywords: complex networks; volume dimension; sigmoid asymptote; mass function; evidence theory (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/17/2775/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/17/2775/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:17:p:2775-:d:1736658
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().