Optimal Job-Switching and Portfolio Decisions with a Mandatory Retirement Date
Geonwoo Kim and
Junkee Jeon ()
Additional contact information
Geonwoo Kim: School of Natural Sciences, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
Junkee Jeon: Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Republic of Korea
Mathematics, 2025, vol. 13, issue 17, 1-16
Abstract:
We study a finite-horizon optimal job-switching and portfolio allocation problem where an agent faces a mandatory retirement date. The agent can freely switch between two jobs with differing levels of income and leisure. The financial market consists of a risk-free asset and a risky asset, with the agent making dynamic consumption, investment, and job-switching decisions to maximize lifetime utility. The utility function follows a Cobb–Douglas form, incorporating both consumption and leisure preferences. Using a dual-martingale approach, we derive the optimal policies and establish a verification theorem confirming their optimality. Our results provide insights into the trade-offs between labor income and leisure over a finite career horizon and their implications for retirement planning and investment behavior.
Keywords: job-switching; portfolio choice; finite-horizon optimization; dual-martingale method; consumption–leisure trade-off; stochastic control (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/17/2809/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/17/2809/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:17:p:2809-:d:1739678
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().