EconPapers    
Economics at your fingertips  
 

Ontology-Driven Digital Twin Framework for Aviation Maintenance and Operations

Igor Kabashkin ()
Additional contact information
Igor Kabashkin: Engineering Faculty, Transport and Telecommunication Institute, Lauvas 2, LV-1019 Riga, Latvia

Mathematics, 2025, vol. 13, issue 17, 1-36

Abstract: This paper presents a novel ontology-driven digital twin framework specifically designed for aviation maintenance and operations that addresses these challenges through semantic reasoning and explainable decision support. The proposed framework integrates seven interconnected ontologies—structural, functional, behavioral, monitoring, maintenance, lifecycle, and environmental. It collectively provides a comprehensive semantic representation of aircraft systems and their operational context. Each ontology is mathematically formalized using description logics and graph theory, creating a unified knowledge graph that enables transparent, traceable reasoning from sensor observations to maintenance decisions. The digital twin is formally defined as a 6-tuple that incorporates semantic transformation engines, cross-ontology mappings, and dynamic reasoning mechanisms. Unlike traditional data-driven approaches that operate as black boxes, the ontology-driven framework provides explainable inference capabilities essential for regulatory compliance and safety certification in aviation. The semantic foundation enables causal reasoning, rule-based validation, and context-aware maintenance recommendations while supporting standardization and interoperability across manufacturers, airlines, and regulatory bodies. The research contributes a mathematically grounded, semantically transparent framework that bridges the gap between domain knowledge and operational data in aviation maintenance. This work establishes the foundation for next-generation cognitive maintenance systems that can support intelligent, adaptive, and trustworthy operations in modern aviation ecosystems.

Keywords: ontology; digital twin; aviation; knowledge graph; predictive maintenance; semantic reasoning; description logic; lifecycle management; explainable AI; maintenance optimization; interoperability; knowledge engineering (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/17/2817/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/17/2817/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:17:p:2817-:d:1740023

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-04
Handle: RePEc:gam:jmathe:v:13:y:2025:i:17:p:2817-:d:1740023