MSAPO: A Multi-Strategy Fusion Artificial Protozoa Optimizer for Solving Real-World Problems
Hanyu Bo,
Jiajia Wu and
Gang Hu ()
Additional contact information
Hanyu Bo: Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China
Jiajia Wu: Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China
Gang Hu: Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China
Mathematics, 2025, vol. 13, issue 17, 1-50
Abstract:
Artificial protozoa optimizer (APO), as a newly proposed meta-heuristic algorithm, is inspired by the foraging, dormancy, and reproduction behaviors of protozoa in nature. Compared with traditional optimization algorithms, APO demonstrates strong competitive advantages; nevertheless, it is not without inherent limitations, such as slow convergence and a proclivity towards local optimization. In order to enhance the efficacy of the algorithm, this paper puts forth a multi-strategy fusion artificial protozoa optimizer, referred to as MSAPO. In the initialization stage, MSAPO employs the piecewise chaotic opposition-based learning strategy, which results in a uniform population distribution, circumvents initialization bias, and enhances the global exploration capability of the algorithm. Subsequently, cyclone foraging strategy is implemented during the heterotrophic foraging phase. enabling the algorithm to identify the optimal search direction with greater precision, guided by the globally optimal individuals. This reduces random wandering, significantly accelerating the optimization search and enhancing the ability to jump out of the local optimal solutions. Furthermore, the incorporation of hybrid mutation strategy in the reproduction stage enables the algorithm to adaptively transform the mutation patterns during the iteration process, facilitating a strategic balance between rapid escape from local optima in the initial stages and precise convergence in the subsequent stages. Ultimately, crisscross strategy is incorporated at the conclusion of the algorithm’s iteration. This not only enhances the algorithm’s global search capacity but also augments its capability to circumvent local optima through the integrated application of horizontal and vertical crossover techniques. This paper presents a comparative analysis of MSAPO with other prominent optimization algorithms on the three-dimensional CEC2017 and the highest-dimensional CEC2022 test sets, and the results of numerical experiments show that MSAPO outperforms the compared algorithms, and ranks first in the performance evaluation in a comprehensive way. In addition, in eight real-world engineering design problem experiments, MSAPO almost always achieves the theoretical optimal value, which fully confirms its high efficiency and applicability, thus verifying the great potential of MSAPO in solving complex optimization problems.
Keywords: artificial protozoa optimizer (APO); cyclone foraging strategy; hybrid mutation strategy; crisscross strategy (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/17/2888/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/17/2888/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:17:p:2888-:d:1743914
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().