EconPapers    
Economics at your fingertips  
 

Knowledge-Aware Arabic Question Generation: A Transformer-Based Framework

Reham Bin Jabr and Aqil M. Azmi ()
Additional contact information
Reham Bin Jabr: Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
Aqil M. Azmi: Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Mathematics, 2025, vol. 13, issue 18, 1-31

Abstract: In this work, we propose a knowledge-aware approach for Arabic automatic question generation (QG) that leverages the multilingual T5 (mT5) transformer augmented with a pre-trained Arabic question-answering model to address challenges posed by Arabic’s morphological richness and limited QG resources. Our system generates both subjective questions and multiple-choice questions (MCQs) with contextually relevant distractors through a dual-model pipeline that tailors the decoding strategy to each subtask: the question generator employs beam search to maximize semantic fidelity and lexical precision, while the distractor generator uses top- k sampling to enhance diversity and contextual plausibility. The QG model is fine-tuned on Arabic SQuAD, and the distractor model is trained on a curated combination of ARCD and Qudrat. Experimental results show that beam search significantly outperforms top- k sampling for fact-based question generation, achieving a BLEU-4 score of 27.49 and a METEOR score of 25.18, surpassing fine-tuned AraT5 and translated English–Arabic baselines. In contrast, top- k sampling is more effective for distractor generation, yielding higher BLEU scores and producing distractors that are more diverse yet remain pedagogically valid, with a BLEU-1 score of 20.28 establishing a strong baseline in the absence of prior Arabic benchmarks. Human evaluation further confirms the quality of the generated questions. This work advances Arabic QG by providing a scalable, knowledge-aware solution with applications in educational technology, while demonstrating the critical role of task-specific decoding strategies and setting a foundation for future research in automated assessment.

Keywords: Arabic question generation; multiple-choice question generation; knowledge-aware NLP; low-resource language processing; beam search; top- k sampling (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/18/2975/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/18/2975/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:18:p:2975-:d:1749316

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-04
Handle: RePEc:gam:jmathe:v:13:y:2025:i:18:p:2975-:d:1749316