EconPapers    
Economics at your fingertips  
 

Hybrid Adaptive MPC with Edge AI for 6-DoF Industrial Robotic Manipulators

Claudio Urrea ()
Additional contact information
Claudio Urrea: Electrical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Las Sophoras 165, Estación Central, Santiago 9170020, Chile

Mathematics, 2025, vol. 13, issue 19, 1-29

Abstract: Autonomous robotic manipulators in industrial environments face significant challenges, including time-varying payloads, multi-source disturbances, and real-time computational constraints. Traditional model predictive control frameworks degrade by over 40% under model uncertainties, while conventional adaptive techniques exhibit convergence times incompatible with industrial cycles. This work presents a hybrid adaptive model predictive control framework integrating edge artificial intelligence with dual-stage parameter estimation for 6-DoF industrial manipulators. The approach combines recursive least squares with a resource-optimized neural network (three layers, 32 neurons, <500 KB memory) designed for industrial edge deployment. The system employs innovation-based adaptive forgetting factors, providing exponential convergence with mathematically proven Lyapunov-based stability guarantees. Simulation validation using the Fanuc CR-7iA/L manipulator demonstrates superior performance across demanding scenarios, including precision laser cutting and obstacle avoidance. Results show 52% trajectory tracking RMSE reduction (0.022 m to 0.012 m) under 20% payload variations compared to standard MPC, while achieving sub-5 ms edge inference latency with 99.2% reliability. The hybrid estimator achieves 65% faster parameter convergence than classical RLS, with 18% energy efficiency improvement. Statistical significance is confirmed through ANOVA ( F = 24.7, p < 0.001) with large effect sizes (Cohen’s d > 1.2). This performance surpasses recent adaptive control methods while maintaining proven stability guarantees. Hardware validation under realistic industrial conditions remains necessary to confirm practical applicability.

Keywords: hybrid adaptive model predictive control; edge AI; 6-DoF robotic manipulators; industrial automation; parameter estimation; uncertainty quantification; real-time control; Lyapunov stability; resource-aware computing; trajectory optimization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/19/3066/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/19/3066/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:19:p:3066-:d:1756858

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-26
Handle: RePEc:gam:jmathe:v:13:y:2025:i:19:p:3066-:d:1756858