Enhancing Local Contrast in Low-Light Images: A Multiscale Model with Adaptive Redistribution of Histogram Excess
Seong-Hyun Jin,
Dong-Min Son,
Seung-Hwan Lee,
Young-Ho Go and
Sung-Hak Lee ()
Additional contact information
Seong-Hyun Jin: School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Dong-Min Son: School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Seung-Hwan Lee: School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Young-Ho Go: School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Sung-Hak Lee: School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Mathematics, 2025, vol. 13, issue 20, 1-36
Abstract:
This paper presents a multiscale histogram excess-distribution strategy addressing the structural limitations (i.e., insufficient dark-region restoration, block artifacts, ringing effects, color distortion, and saturation loss) of contrast-limited adaptive histogram equalization (CLAHE) and retinex-based image-contrast enhancement techniques. This method adjusts the ratio between the uniform and weighted distribution of the histogram excess based on the average tile brightness. At the coarsest scale, excess pixels are redistributed to histogram bins initially occupied by pixels, maximizing detail restoration in dark areas. For medium and fine scales, the contrast enhancement strength is adjusted according to tile brightness to preserve local luminance transitions. Scale-specific lookup tables are bilinearly interpolated and merged at the pixel level. Background restoration corrects unnatural tone compression by referencing the original image, ensuring visual consistency. A ratio-based chroma adjustment and color-restoration function compensate for saturation degradation in retinex-based approaches. An asymmetric Gaussian offset correction preserves structural information and expands the global dynamic range. The experimental results demonstrate that this method enhances local and global contrast while preserving fine details in low light and high brightness. Compared with various existing methods, this method reproduces more natural color with superior image enhancement.
Keywords: CLAHE; local contrast enhancement; tone continuity; detail preservation; noise suppression (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/20/3282/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/20/3282/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:20:p:3282-:d:1770910
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().