A Scalarized Entropy-Based Model for Portfolio Optimization: Balancing Return, Risk and Diversification
Florentin Șerban () and
Silvia Dedu
Additional contact information
Florentin Șerban: Department of Applied Mathematics, Bucharest University of Economic Studies, 010374 Bucharest, Romania
Silvia Dedu: Department of Applied Mathematics, Bucharest University of Economic Studies, 010374 Bucharest, Romania
Mathematics, 2025, vol. 13, issue 20, 1-14
Abstract:
Portfolio optimization is a cornerstone of modern financial decision-making, traditionally based on the mean–variance model introduced by Markowitz. However, this framework relies on restrictive assumptions—such as normally distributed returns and symmetric risk preferences—that often fail in real-world markets, particularly in volatile and non-Gaussian environments such as cryptocurrencies. To address these limitations, this paper proposes a novel multi-objective model that combines expected return maximization, mean absolute deviation (MAD) minimization, and entropy-based diversification into a unified optimization structure: the Mean–Deviation–Entropy (MDE) model. The MAD metric offers a robust alternative to variance by capturing the average magnitude of deviations from the mean without inflating extreme values, while entropy serves as an information-theoretic proxy for portfolio diversification and uncertainty. Three entropy formulations are considered—Shannon entropy, Tsallis entropy, and cumulative residual Sharma–Taneja–Mittal entropy (CR-STME)—to explore different notions of uncertainty and structural diversity. The MDE model is formulated as a tri-objective optimization problem and solved via scalarization techniques, enabling flexible trade-offs between return, deviation, and entropy. The framework is empirically tested on a cryptocurrency portfolio composed of Bitcoin (BTC), Ethereum (ETH), Solana (SOL), and Binance Coin (BNB), using daily data over a 12-month period. The empirical setting reflects a high-volatility, high-skewness regime, ideal for testing entropy-driven diversification. Comparative outcomes reveal that entropy-integrated models yield more robust weightings, particularly when tail risk and regime shifts are present. Comparative results against classical mean–variance and mean–MAD models indicate that the MDE model achieves improved diversification, enhanced allocation stability, and greater resilience to volatility clustering and tail risk. This study contributes to the literature on robust portfolio optimization by integrating entropy as a formal objective within a scalarized multi-criteria framework. The proposed approach offers promising applications in sustainable investing, algorithmic asset allocation, and decentralized finance, especially under high-uncertainty market conditions.
Keywords: mean absolute deviation; scalarization; weighted Shannon entropy; Tsallis entropy; portfolio optimization; cryptocurrency market; diversification; robust decision making (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/20/3311/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/20/3311/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:20:p:3311-:d:1773221
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().