Artificial Intelligence Applied to Soil Compaction Control for the Light Dynamic Penetrometer Method
Jorge Rojas-Vivanco (),
José García (),
Gabriel Villavicencio,
Miguel Benz,
Antonio Herrera,
Pierre Breul,
German Varas,
Paola Moraga,
Jose Gornall and
Hernan Pinto
Additional contact information
Jorge Rojas-Vivanco: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2340000, Chile
José García: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2340000, Chile
Gabriel Villavicencio: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2340000, Chile
Miguel Benz: Research and Development, Sol Solution, 63204 Riom Cedex, France
Antonio Herrera: Research and Development, Sol Solution, 63204 Riom Cedex, France
Pierre Breul: Institut Pascal, Clermont Auvergne University, 63174 Aubière, France
German Varas: Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), Avenida Universidad 330, Valparaíso 2373223, Chile
Paola Moraga: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2340000, Chile
Jose Gornall: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2340000, Chile
Hernan Pinto: Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2340000, Chile
Mathematics, 2025, vol. 13, issue 21, 1-34
Abstract:
Compaction quality control in earthworks and pavements still relies mainly on density-based acceptance referenced to laboratory Proctor tests, which are costly, time-consuming, and spatially sparse. Lightweight dynamic cone penetrometer (LDCP) provides rapid indices, such as q d 0 and q d 1 , yet acceptance thresholds commonly depend on ad hoc, site-specific calibrations. This study develops and validates a supervised machine learning framework that estimates q d 0 , q d 1 , and Z c directly from readily available soil descriptors (gradation, plasticity/activity, moisture/state variables, and GTR class) using a multi-campaign dataset of n = 360 observations. While the framework does not remove the need for the standard soil characterization performed during design (e.g., W , γ d , field , and R C SPC ), it reduces reliance on additional LDCP calibration campaigns to obtain device-specific reference curves. Models compared under a unified pipeline include regularized linear baselines, support vector regression, Random Forest, XGBoost, and a compact multilayer perceptron (MLP). The evaluation used a fixed 80/20 train–test split with 5-fold cross-validation on the training set and multiple error metrics ( R 2 , RMSE, MAE, and MAPE). Interpretability combined SHAP with permutation importance, 1D partial dependence (PDP), and accumulated local effects (ALE); calibration diagnostics and split-conformal prediction intervals connected the predictions to QA/QC decisions. A naïve GTR-average baseline was added for reference. Computation was lightweight. On the test set, the MLP attained the best accuracy for q d 1 ( R 2 = 0.794 , RMSE = 5.866 ), with XGBoost close behind ( R 2 = 0.773 , RMSE = 6.155 ). Paired bootstrap contrasts with Holm correction indicated that the MLP–XGBoost difference was not statistically significant. Explanations consistently highlighted density- and moisture-related variables ( γ d , field , R C SPC , and W ) as dominant, with gradation/plasticity contributing second-order adjustments; these attributions are model-based and associational rather than causal. The results support interpretable, computationally efficient surrogates of LDCP indices that can complement density-based acceptance and enable risk-aware QA/QC via conformal prediction intervals.
Keywords: compaction control; dynamic penetrometer; soils; machine learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/21/3359/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/21/3359/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:21:p:3359-:d:1776728
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().