EconPapers    
Economics at your fingertips  
 

An Inverse Extremal Eigenproblem for Bordered Tridiagonal Matrices Applied to an Inverse Singular Value Problem for Lefkovitch-Type Matrices

Hubert Pickmann-Soto (), Susana Arela-Pérez, Cristina Manzaneda and Hans Nina
Additional contact information
Hubert Pickmann-Soto: Departamento de Matemática, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile
Susana Arela-Pérez: Departamento de Matemática, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile
Cristina Manzaneda: Departamento de Matemáticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
Hans Nina: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile

Mathematics, 2025, vol. 13, issue 21, 1-18

Abstract: This paper focuses on the inverse extremal eigenvalue problem (IEEP) and a special inverse singular value problem (ISVP). First, a bordered tridiagonal matrix is constructed from the extremal eigenvalues of its leading principal submatrices and an eigenvector. Then, based on the previous construction, a Lefkovitch-type matrix is constructed from a particular set of singular values and a singular vector. Sufficient conditions are established for the existence of a symmetric bordered tridiagonal matrix, while the nonsymmetric case is also addressed. Finally, numerical examples illustrating these constructions derived from the main results are presented.

Keywords: inverse eigenvalue problem; inverse singular value problem; interlacinginequalities; bordered tridiagonal matrices; Lefkovitch matrices (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/21/3369/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/21/3369/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:21:p:3369-:d:1777447

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-24
Handle: RePEc:gam:jmathe:v:13:y:2025:i:21:p:3369-:d:1777447