EconPapers    
Economics at your fingertips  
 

Improved Federated Learning Incentive Mechanism Algorithm Based on Explainable DAG Similarity Evaluation

Wenhao Lin and Yang Zhou ()
Additional contact information
Wenhao Lin: Applied Mathematics, University of Washington, Seattle, WA 98015, USA
Yang Zhou: Artificial Intelligence Laboratory, Shanghai University, Shanghai 201109, China

Mathematics, 2025, vol. 13, issue 21, 1-37

Abstract: In vehicular networks, inter-vehicle data sharing and collaborative computing improve traffic efficiency and driving experience. However, centralized processing faces challenges with privacy, communication bottlenecks, and real-time performance. This paper proposes a trust assessment mechanism for vehicular federated learning based on graph neural network (GNN) edge weight similarity. An explainable asynchronous federated learning data sharing framework is designed, consisting of permissioned asynchronous federated learning and a locally verifiable directed acyclic graph (DAG). The GNN connection weights perform reputation assessment on edge devices through DAG-based verification, while deep reinforcement learning (DRL) enables explainable node selection to improve asynchronous federated learning efficiency. The proposed explainable incentive mechanism based on GNN edge weight similarity and DAG can not only effectively prevent malicious node attacks but also improve the fairness and explainability of federated learning. Extensive experiments across different participant scales (30–200 nodes), various asynchrony degrees ( α = 1–5), and malicious node attack scenarios (up to 50% malicious nodes) demonstrate that our method consistently outperforms state-of-the-art approaches, achieving up to 99.2% accuracy with significant improvements of 1.3–3.1% over existing trust-based federated learning methods and maintaining 95% accuracy even under severe attack conditions. The results show that the proposed scheme performs well in terms of learning accuracy and convergence speed.

Keywords: asynchronous federated learning; deep reinforcement learning; directed acyclic graph; graph neural network; trust assessment (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/21/3507/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/21/3507/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:21:p:3507-:d:1785671

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-03
Handle: RePEc:gam:jmathe:v:13:y:2025:i:21:p:3507-:d:1785671