Adaptive Control for Constrained Nonlinear Systems Under Deception Attacks and Actuator Saturation
Shixuan Zhang,
Ping Zhao () and
Muyu Li
Additional contact information
Shixuan Zhang: School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
Ping Zhao: School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
Muyu Li: School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
Mathematics, 2025, vol. 13, issue 21, 1-18
Abstract:
This paper proposes an adaptive control framework for constrained nonlinear systems subject to sensor and actuator deception attacks, in the presence of actuator saturation. To enforce state constraints under sensor attacks, a modified coordinate transformation is integrated with a barrier Lyapunov function (BLF) design, ensuring controller feasibility and constraint satisfaction even when state measurements are compromised. Moreover, the compounded effects of actuator saturation and actuator-side attacks are explicitly analyzed within a unified BLF framework, and an adaptive decoupling-compensation strategy is introduced to mitigate their influence. Simulation results demonstrate the effectiveness and robustness of the proposed approach.
Keywords: adaptive control; full-state constraints; actuator saturation; deception attacks (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/21/3508/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/21/3508/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:21:p:3508-:d:1785669
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().