EconPapers    
Economics at your fingertips  
 

Multi-UAV Task Allocation Based on Grid-Based Particle Swarm and Genetic Hybrid Algorithm

Yuting Xiong and Liang Zhang ()
Additional contact information
Yuting Xiong: School of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430070, China
Liang Zhang: School of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430070, China

Mathematics, 2025, vol. 13, issue 22, 1-20

Abstract: To address the uneven distribution of the Pareto front and insufficient convergence in multi-UAV task allocation, this paper proposes GrEAPSO, an improved algorithm that hybridizes Particle Swarm Optimization (PSO) with Genetic Algorithm (GA). GrEAPSO balances exploitation and exploration through grid partitioning, adopts a dual-encoding scheme coupled with crossover and mutation to enhance population diversity, and employs a grid-based environmental selection mechanism to improve the uniformity of the Pareto set. After initialization, the algorithm iteratively performs a PSO-based local search, genetic crossover and mutation, and grid-based environmental selection. The offspring and parent populations are then merged, and the archive set is updated accordingly. Across three military UAV task-allocation scenarios (small, medium, and large), GrEAPSO is benchmarked against MOPSO, NSGA-II/III, MOEA/D-DE, RVEA, IBEA, MOMVO, and MaOGOA. All experiments use a population size of 100. Its reference point is undominated and dominates some competitors, with median gains of 55.78% in hypervolume and 8.11% in spacing. Finally, the sensitive analysis further indicates that dividing the objective space into 15–20 grids offers the best trade-off between search breadth and solution distribution.

Keywords: multi-UAV; task allocation; multi-objective optimization; grid mechanism; Particle Swarm Optimization (PSO); Genetic Algorithm (GA) (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/22/3591/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/22/3591/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:22:p:3591-:d:1790627

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-20
Handle: RePEc:gam:jmathe:v:13:y:2025:i:22:p:3591-:d:1790627