Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters
Paul Rilstone ()
Additional contact information
Paul Rilstone: Department of Economics, York University, Toronto, ON M3J 1P3, Canada
Mathematics, 2025, vol. 13, issue 2, 1-39
Abstract:
Higher-order asymptotic methods for nonlinear models with nuisance parameters are developed. We allow for both one-step estimators, in which the nuisance and parameters of interest are jointly estimated; and also two-step (or iterated) estimators, in which the nuisance parameters are first estimated. The properties of the former, although in principle simpler to conceptualize, are more difficult to establish explicitly. The iterated estimators allow for a variety of scenarios. The results indicate when second-order considerations should be taken into account when conducting inferences with two-step estimators. The results in the paper accomplish three objectives: (i) provide simpler methods for deriving higher-order moments when nuisance parameters are present; (ii) indicate more explicitly the sources of deviations of estimators’ sampling distributions from that given by standard first-order asymptotic theory; and, in turn, (iii) indicate in which situations the corrections (either analytically or by a resampling method such as bootstrap or jackknife) should be made when making inferences. We illustrate using several popular examples in econometrics. We also provide a numerical example which highlights how a simple analytical bias correction can improve inferences.
Keywords: stochastic expansions; approximate moments; nuisance parameters; two-step estimators; instrumental variables (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/2/179/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/2/179/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:2:p:179-:d:1561930
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().