EconPapers    
Economics at your fingertips  
 

Convergence Speed of Bermudan, Randomized Bermudan, and Canadian Options

Guillaume Leduc ()
Additional contact information
Guillaume Leduc: Department of Mathematics and Statistics, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

Mathematics, 2025, vol. 13, issue 2, 1-14

Abstract: American options have long received considerable attention in the literature, with numerous publications dedicated to their pricing. Bermudan and randomized Bermudan options are broadly used to estimate their prices efficiently. Notably, the penalty method yields option prices that coincide with those of randomized Bermudan options. However, theoretical results regarding the speed of convergence of these approximations to the American option price remain scarce. In this paper, we address this gap by establishing a general result on the convergence speed of Bermudan and randomized Bermudan option prices to their American limits. We prove that for convex payoff functions, the convergence speed is linear; that is, of order 1 / n , where n denotes the number of exercisable opportunities in the Bermudan case and serves as the intensity parameter of the underlying Poisson process in the randomized Bermudan case. Our framework is quite general, encompassing Lévy models, stochastic volatility models, and nearly any risk-neutral model that can be incorporated within a strong Markov framework. We extend our analysis to Canadian options, showing under mild conditions a convergence rate of 1 / n to their American limits. To our knowledge, this is the first study addressing the speed of convergence in Canadian option pricing.

Keywords: Bermudan option; American option; randomization; convergence speed (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/2/213/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/2/213/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:2:p:213-:d:1564003

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:213-:d:1564003