EconPapers    
Economics at your fingertips  
 

Emotion Recognition from EEG Signals Using Advanced Transformations and Deep Learning

Jonathan Axel Cruz-Vazquez (), Jesús Yaljá Montiel-Pérez (), Rodolfo Romero-Herrera and Elsa Rubio-Espino
Additional contact information
Jonathan Axel Cruz-Vazquez: Instituto Politécnico Nacional, Centro de Investigación en Computación, Ciudad de México 07738, Mexico
Jesús Yaljá Montiel-Pérez: Instituto Politécnico Nacional, Centro de Investigación en Computación, Ciudad de México 07738, Mexico
Rodolfo Romero-Herrera: Instituto Politécnico Nacional, Escuela Superior de Cómputo, Ciudad de México 07738, Mexico
Elsa Rubio-Espino: Instituto Politécnico Nacional, Centro de Investigación en Computación, Ciudad de México 07738, Mexico

Mathematics, 2025, vol. 13, issue 2, 1-40

Abstract: Affective computing aims to develop systems capable of effectively interacting with people through emotion recognition. Neuroscience and psychology have established models that classify universal human emotions, providing a foundational framework for developing emotion recognition systems. Brain activity related to emotional states can be captured through electroencephalography (EEG), enabling the creation of models that classify emotions even in uncontrolled environments. In this study, we propose an emotion recognition model based on EEG signals using deep learning techniques on a proprietary database. To improve the separability of emotions, we explored various data transformation techniques, including Fourier Neural Networks and quantum rotations. The convolutional neural network model, combined with quantum rotations, achieved a 95% accuracy in emotion classification, particularly in distinguishing sad emotions. The integration of these transformations can further enhance overall emotion recognition performance.

Keywords: EEG signals; emotion recognition; deep learning; signal processing (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/2/254/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/2/254/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:2:p:254-:d:1566619

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:254-:d:1566619