EconPapers    
Economics at your fingertips  
 

A Control Method for Thermal Structural Tests of Hypersonic Missile Aerodynamic Heating

Chao Lu, Guangming Zhang and Xiaodong Lv ()
Additional contact information
Chao Lu: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China
Guangming Zhang: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China
Xiaodong Lv: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211899, China

Mathematics, 2025, vol. 13, issue 3, 1-22

Abstract: This paper presents an intelligent proportional-derivative adaptive global nonsingular fast-terminal sliding-mode control (IPDAGNFTSMC) for tracking temperature trajectories of a hypersonic missile in thermal structural tests. Firstly, the numerical analyses on a hypersonic missile’s aerodynamic heating are based on three different external flow fields via the finite element calculation, which provides the data basis for the thermal structural test of hypersonic vehicles; secondly, due to temperature trajectory differences of a hypersonic missile and the thermal inertia and nonlinear characteristics of quartz lamps in thermal structural test, IPDAGNFTSMC is proposed, consisting of three components: (i) the mathematical model of the thermal structural test is established and further replaced via an intelligent proportional-derivative with a nonlinear extended state observer (NESO) for online unknown disturbances observation; (ii) compared with the traditional sliding-mode control method, the AGNFTSMC method eliminates the reaching phase and the initial control state is trapped on the sliding-mode surface. Therefore, it can alleviate chattering phenomenon, accelerate the convergence rate of the sliding mode, and ensure that there is no singular problem in the entire control process; (iii) the adaptive law is designed to effectively solve problems of convergence stagnation and chattering phenomenon. The Lyapunov stability theory is used to prove the stability of the proposed IPDAGNFTSMC-NESO. Finally, the advantages of the designed control method are verified by experimental simulation and comparison.

Keywords: hypersonic missile; thermal structural test; sliding mode control (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/3/380/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/3/380/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:3:p:380-:d:1576242

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:380-:d:1576242