EconPapers    
Economics at your fingertips  
 

YOLO-SSW: An Improved Detection Method for Printed Circuit Board Surface Defects

Tizheng Yuan, Zhengkuo Jiao and Naizhe Diao ()
Additional contact information
Tizheng Yuan: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Zhengkuo Jiao: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Naizhe Diao: The School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

Mathematics, 2025, vol. 13, issue 3, 1-26

Abstract: Accurately recognizing tiny defects on printed circuit boards (PCBs) remains a significant challenge due to the abundance of small targets and complex background textures. To tackle this issue, this article proposes a novel YOLO-SPD-SimAM-WIoU (YOLO-SSW) network, based on an improved YOLOv8 algorithm, to detect tiny PCB defects with greater accuracy and efficiency. Firstly, a high-resolution feature layer (P2) is incorporated into the feature fusion part to preserve detailed spatial information of small targets. Secondly, a Non-strided Convolution with Space-to-Depth (Conv-SPD) module is incorporated to retain fine-grained information by replacing traditional strided convolutions, which helps maintain spatial resolution. Thirdly, the Simple Parameter-Free Attention Module (SimAM) is integrated into the backbone to enhance feature extraction and noise resistance, focusing the model’s attention on small targets in relevant areas. Finally, the Wise-IoU (WIoU) loss function is adopted to dynamically adjust gradient gains, reducing the impact of low-quality examples, thereby enhancing localization accuracy. Comprehensive evaluations on publicly available PCB defect datasets have demonstrated that the proposed YOLO-SSW model significantly outperforms several state-of-the-art models, achieving a mean average precision (mAP) of 98.4%. Notably, compared to YOLOv8s, YOLO-SSW improved the mAP, precision, and recall by 0.8%, 0.6%, and 0.8%, respectively, confirming its accuracy and effectiveness.

Keywords: deep learning (DL); small defect detection; printed circuit boards (PCBs); YOLOv8 (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/3/435/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/3/435/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:3:p:435-:d:1578838

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:435-:d:1578838