EconPapers    
Economics at your fingertips  
 

Improved Confidence Intervals for Expectiles

Spiridon Penev () and Yoshihiko Maesono
Additional contact information
Spiridon Penev: Department of Statistics, The University of New South Wales Sydney, Kensington, NSW 2052, Australia
Yoshihiko Maesono: Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Mathematics, 2025, vol. 13, issue 3, 1-27

Abstract: Expectiles were introduced to statistics around 40 years ago, but have recently gained renewed interest due to their relevance in financial risk management. In particular, the 2007–2009 global financial crisis highlighted the need for more robust risk evaluation tools, leading to the adoption of inference methods for expectiles. While first-order asymptotic inference results for expectiles are well established, higher-order asymptotic results remain underdeveloped. This study aims to fill that gap by deriving higher-order asymptotic results for expectiles, ultimately improving the accuracy of confidence intervals. The paper outlines the derivation of the Edgeworth expansion for both the standardized and studentized versions of the kernel-based estimator of the expectile, using large deviation results on U -statistics. The expansion is then inverted to construct more precise confidence intervals for the expectile. These theoretical results were applied to moderate sample sizes ranging from 20 to 200. To demonstrate the advantages of this methodology, an example from risk management is presented. The enhanced confidence intervals consistently outperformed those based on the first-order normal approximation. The methodology introduced in this paper can also be extended to other contexts.

Keywords: nonparametric statistics; expectile; kernel; smoothing; risk; Edgeworth expansion (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/3/510/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/3/510/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:3:p:510-:d:1583031

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:510-:d:1583031