On Ideals of Submonoids of Power Monoids
Juan Ignacio García-García,
Daniel Marín-Aragón and
Alberto Vigneron-Tenorio ()
Additional contact information
Juan Ignacio García-García: Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
Daniel Marín-Aragón: Departamento de Matemáticas, Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
Alberto Vigneron-Tenorio: Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11406 Jerez de la Frontera, Cádiz, Spain
Mathematics, 2025, vol. 13, issue 4, 1-14
Abstract:
Let S be a numerical monoid, while a P fin ( S ) -monoid S is a monoid generated by a finite number of finite non-empty subsets of S . That is, S is a non-cancellative commutative monoid obtained from the sumset of finite non-negative integer sets. This work provides an algorithm for computing the ideals associated with some P fin ( S ) -monoids. These are the key to studying some factorization properties of P fin ( S ) -monoids and some additive properties of sumsets. This approach links computational commutative algebra with additive number theory.
Keywords: atomic monoid; elasticity; h-fold sumset; non-cancellative monoid; power monoid; monoid ideal; semigroup ideal; sumset (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/4/584/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/4/584/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:4:p:584-:d:1587931
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().