EconPapers    
Economics at your fingertips  
 

On Ideals of Submonoids of Power Monoids

Juan Ignacio García-García, Daniel Marín-Aragón and Alberto Vigneron-Tenorio ()
Additional contact information
Juan Ignacio García-García: Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
Daniel Marín-Aragón: Departamento de Matemáticas, Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
Alberto Vigneron-Tenorio: Departamento de Matemáticas/INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11406 Jerez de la Frontera, Cádiz, Spain

Mathematics, 2025, vol. 13, issue 4, 1-14

Abstract: Let S be a numerical monoid, while a P fin ( S ) -monoid S is a monoid generated by a finite number of finite non-empty subsets of S . That is, S is a non-cancellative commutative monoid obtained from the sumset of finite non-negative integer sets. This work provides an algorithm for computing the ideals associated with some P fin ( S ) -monoids. These are the key to studying some factorization properties of P fin ( S ) -monoids and some additive properties of sumsets. This approach links computational commutative algebra with additive number theory.

Keywords: atomic monoid; elasticity; h-fold sumset; non-cancellative monoid; power monoid; monoid ideal; semigroup ideal; sumset (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/4/584/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/4/584/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:4:p:584-:d:1587931

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:584-:d:1587931