EconPapers    
Economics at your fingertips  
 

Inference for Two-Parameter Birnbaum–Saunders Distribution Based on Type-II Censored Data with Application to the Fatigue Life of Aluminum Coupon Cuts

Omar M. Bdair ()
Additional contact information
Omar M. Bdair: Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan

Mathematics, 2025, vol. 13, issue 4, 1-24

Abstract: This study addresses the problem of parameter estimation and prediction for type-II censored data from the two-parameter Birnbaum–Saunders (BS) distribution. The BS distribution is commonly used in reliability analysis, particularly in modeling fatigue life. Accurate estimation and prediction are crucial in many fields where censored data frequently appear, such as material science, medical studies and industrial applications. This paper presents both frequentist and Bayesian approaches to estimate the shape and scale parameters of the BS distribution, along with the prediction of unobserved failure times. Random data are generated from the BS distribution under type-II censoring, where a pre-specified number of failures ( m ) is observed. The generated data are used to calculate the Maximum Likelihood Estimation (MLE) and Bayesian inference and evaluate their performances. The Bayesian method employs Markov Chain Monte Carlo (MCMC) sampling for point predictions and credible intervals. We apply the methods to both datasets generated under type-II censoring and real-world data on the fatigue life of 6061-T6 aluminum coupons. Although the results show that the two methods yield similar parameter estimates, the Bayesian approach offers more flexible and reliable prediction intervals. Extensive R codes are used to explain the practical application of these methods. Our findings confirm the advantages of Bayesian inference in handling censored data, especially when prior information is available for estimation. This work not only supports the theoretical understanding of the BS distribution under type-II censoring but also provides practical tools for analyzing real data in reliability and survival studies. Future research will discuss extensions of these methods to the multi-sample progressive censoring model with larger datasets and the integration of degradation models commonly encountered in industrial applications.

Keywords: two-parameter Birnbaum–Saunders distribution; Bayesian estimation and prediction; type-II censoring sample; Gibbs and Metropolis sampling; importance sampling; maximum likelihood estimation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/4/590/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/4/590/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:4:p:590-:d:1588556

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:590-:d:1588556