EconPapers    
Economics at your fingertips  
 

On Ulam–Hyers–Mittag-Leffler Stability of Fractional Integral Equations Containing Multiple Variable Delays

Osman Tunç and Cemil Tunç ()
Additional contact information
Osman Tunç: Department of Computer Programing, Baskale Vocational School, Van Yuzuncu Yil University, 65080 Van, Turkey
Cemil Tunç: Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yıl University, 65080 Van, Turkey

Mathematics, 2025, vol. 13, issue 4, 1-20

Abstract: In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order mathematical models. Thereby, given these considerations, the investigation of qualitative properties, in particular, Ulam-type stabilities of fractional differential equations, fractional integral equations, etc., has now become a highly attractive subject for mathematicians, as this represents an important field of study due to their extensive applications in various branches of aerodynamics, biology, chemistry, the electrodynamics of complex media, polymer science, physics, rheology, and so on. Meanwhile, the qualitative concepts called Ulam–Hyers–Mittag-Leffler (U-H-M-L) stability and Ulam–Hyers–Mittag-Leffler–Rassias (U-H-M-L-R) stability are well-suited for describing the characteristics of fractional Ulam-type stabilities. The Banach contraction principle is a fundamental tool in nonlinear analysis, with numerous applications in operational equations, fractal theory, optimization theory, and various other fields. In this study, we consider a nonlinear fractional Volterra integral equation (FrVIE). The nonlinear terms in the FrVIE contain multiple variable delays. We prove the U-H-M-L stability and U-H-M-L-R stability of the FrVIE on a finite interval. Throughout this article, new sufficient conditions are obtained via six new results with regard to the U-H-M-L stability or the U-H-M-L-R stability of the FrVIE. The proofs depend on Banach’s fixed-point theorem, as well as the Chebyshev and Bielecki norms. In the particular case of the FrVIE, an example is delivered to illustrate U-H-M-L stability.

Keywords: fractional Volterra integral equation; U-H-M-L stability; U-H-M-L-R stability; Banach’s fixed-point theorem; Chebyshev and Bielecki norms (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/4/606/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/4/606/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:4:p:606-:d:1589841

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:606-:d:1589841