EconPapers    
Economics at your fingertips  
 

Volume-Increasing Inextensional Deformations of Platonic Polyhedra

András Lengyel ()
Additional contact information
András Lengyel: Department of Structural Mechanics, Budapest University of Technology and Economics, 1111 Budapest, Hungary

Mathematics, 2025, vol. 13, issue 4, 1-13

Abstract: It is known that the volume of a convex polyhedron can be increased by suitable isometric deformation of its surface resulting in a non-convex shape. Deformation patterns and the associated enclosed volumes of the Platonic polyhedra were theoretically and numerically investigated by a few authors in the past. In this paper, a generic diamond-shaped folding pattern for all Platonic polyhedra is presented, optimised to achieve the maximum enclosed volumes. The numerically obtained volume increases (44.70%, 25.12%, 13.86%, 10.61%, and 4.36% for the regular tetrahedron, cube, octahedron, dodecahedron, and icosahedron, respectively) improve the existing results (44.00%, 24.62%, 13.58%, 9.72%, and 4.27%, respectively). Quasi-rigid inflatable membrane representations of such deformed polyhedra imply a significant change of structural shape due to initial inflation and subsequent compressive stresses transverse to the crease lines.

Keywords: Platonic polyhedra; isometry; folding; volume (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/4/645/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/4/645/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:4:p:645-:d:1592352

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:645-:d:1592352