Möbius Transformations in the Second Symmetric Product of ℂ
Gabriela Hinojosa,
Ulises Morales-Fuentes and
Rogelio Valdez ()
Additional contact information
Gabriela Hinojosa: Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
Ulises Morales-Fuentes: Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
Rogelio Valdez: Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
Mathematics, 2025, vol. 13, issue 5, 1-19
Abstract:
Let F 2 ( C ) denote the second symmetric product of the complex plane C endowed with the Hausdorff topology, i.e., F 2 ( C ) = { A ⊂ C : | A | ≤ 2 , A ≠ ∅ } . In this paper, we extended the concept of Möbius transformations to F 2 ( C ) . More precisely, given a Möbius transformation T of C , we define the map T ˜ ( { z , w } ) = { T ( z ) , T ( w ) } within F 2 ( C ) . We describe some general properties of these maps, including the structure of their generators, characteristics related to transitivity, and the geometry of the conjugacy classes.
Keywords: second symmetric product; Möbius transformations; transitivity; conjugacy classes (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/5/780/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/5/780/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:5:p:780-:d:1600707
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().