EconPapers    
Economics at your fingertips  
 

Möbius Transformations in the Second Symmetric Product of ℂ

Gabriela Hinojosa, Ulises Morales-Fuentes and Rogelio Valdez ()
Additional contact information
Gabriela Hinojosa: Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
Ulises Morales-Fuentes: Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
Rogelio Valdez: Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico

Mathematics, 2025, vol. 13, issue 5, 1-19

Abstract: Let F 2 ( C ) denote the second symmetric product of the complex plane C endowed with the Hausdorff topology, i.e., F 2 ( C ) = { A ⊂ C : | A | ≤ 2 , A ≠ ∅ } . In this paper, we extended the concept of Möbius transformations to F 2 ( C ) . More precisely, given a Möbius transformation T of C , we define the map T ˜ ( { z , w } ) = { T ( z ) , T ( w ) } within F 2 ( C ) . We describe some general properties of these maps, including the structure of their generators, characteristics related to transitivity, and the geometry of the conjugacy classes.

Keywords: second symmetric product; Möbius transformations; transitivity; conjugacy classes (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/5/780/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/5/780/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:5:p:780-:d:1600707

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:780-:d:1600707