EconPapers    
Economics at your fingertips  
 

New Results About Aggregation Functions of Quasi-Pseudometric Modulars

Alejandro Fructuoso-Bonet () and Jesús Rodríguez-López
Additional contact information
Alejandro Fructuoso-Bonet: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Jesús Rodríguez-López: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Mathematics, 2025, vol. 13, issue 5, 1-23

Abstract: In recent studies, Bibiloni-Femenias, Miñana, and Valero characterized the functions that aggregate a family of (quasi-)(pseudo)metric modulars defined over a fixed set X into a single one. In this paper, we adopt a related but different approach to examine those functions that allow us to define a (quasi-)(pseudo)metric modular in the Cartesian product of (quasi-)(pseudo)metric modular spaces. We base our research on the recent development of a general theory of aggregation functions between quantales. This enables us to shed light between the two different ways of aggregation (quasi-)(pseudo)metric modulars.

Keywords: quasi-pseudometric modular; aggregation function; quantale; lax morphism (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/5/809/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/5/809/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:5:p:809-:d:1602500

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:809-:d:1602500