EconPapers    
Economics at your fingertips  
 

A Differential Privacy Framework with Adjustable Efficiency–Utility Trade-Offs for Data Collection

Jongwook Kim and Sae-Hong Cho ()
Additional contact information
Jongwook Kim: Department of Computer Science, Sangmyung University, Seoul 03016, Republic of Korea
Sae-Hong Cho: School of Computer Engineering, Hansung University, Seoul 02876, Republic of Korea

Mathematics, 2025, vol. 13, issue 5, 1-21

Abstract: The widespread use of mobile devices has led to the continuous collection of vast amounts of user-generated data, supporting data-driven decisions across a variety of fields. However, the growing volume of these data raises significant privacy concerns, especially when they include personal information vulnerable to misuse. Differential privacy (DP) has emerged as a prominent solution to these concerns, enabling the collection of user-generated data for data-driven decision-making while protecting user privacy. Despite their strengths, existing DP-based data collection frameworks are often faced with a trade-off between the utility of the data and the computational overhead. To address these challenges, we propose the differentially private fractional coverage model (DPFCM), a DP-based framework that adaptively balances data utility and computational overhead according to the requirements of data-driven decisions. DPFCM introduces two parameters, α and β , which control the fractions of collected data elements and user data, respectively, to ensure both data diversity and representative user coverage. In addition, we propose two probability-based methods for effectively determining the minimum data each user should provide to satisfy the DPFCM requirements. Experimental results on real-world datasets validate the effectiveness of DPFCM, demonstrating its high data utility and computational efficiency, especially for applications requiring real-time decision-making.

Keywords: differential privacy; data utility; computation overhead; data-driven decision (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/5/812/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/5/812/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:5:p:812-:d:1602547

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:812-:d:1602547