A Novel SHAP-GAN Network for Interpretable Ovarian Cancer Diagnosis
Jingxun Cai,
Zne-Jung Lee (),
Zhihxian Lin () and
Ming-Ren Yang
Additional contact information
Jingxun Cai: Graduate School of New Generation Electronic Information Engineer, School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
Zne-Jung Lee: Department of Electronic and Information Engineering, School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
Zhihxian Lin: Department of Electronic and Information Engineering, School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
Ming-Ren Yang: Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 235, Taiwan
Mathematics, 2025, vol. 13, issue 5, 1-19
Abstract:
Ovarian cancer stands out as one of the most formidable adversaries in women’s health, largely due to its typically subtle and nonspecific early symptoms, which pose significant challenges to early detection and diagnosis. Although existing diagnostic methods, such as biomarker testing and imaging, can help with early diagnosis to some extent, these methods still have limitations in sensitivity and accuracy, often leading to misdiagnosis or missed diagnosis. Ovarian cancer’s high heterogeneity and complexity increase diagnostic challenges, especially in disease progression prediction and patient classification. Machine learning (ML) has outperformed traditional methods in cancer detection by processing large datasets to identify patterns missed by conventional techniques. However, existing AI models still struggle with accuracy in handling imbalanced and high-dimensional data, and their “black-box” nature limits clinical interpretability. To address these issues, this study proposes SHAP-GAN, an innovative diagnostic model for ovarian cancer that integrates Shapley Additive exPlanations (SHAP) with Generative Adversarial Networks (GANs). The SHAP module quantifies each biomarker’s contribution to the diagnosis, while the GAN component optimizes medical data generation. This approach tackles three key challenges in medical diagnosis: data scarcity, model interpretability, and diagnostic accuracy. Results show that SHAP-GAN outperforms traditional methods in sensitivity, accuracy, and interpretability, particularly with high-dimensional and imbalanced ovarian cancer datasets. The top three influential features identified are PRR11, CIAO1, and SMPD3, which exhibit wide SHAP value distributions, highlighting their significant impact on model predictions. The SHAP-GAN network has demonstrated an impressive accuracy rate of 99.34% on the ovarian cancer dataset, significantly outperforming baseline algorithms, including Support Vector Machines (SVM), Logistic Regression (LR), and XGBoost. Specifically, SVM achieved an accuracy of 72.78%, LR achieved 86.09%, and XGBoost achieved 96.69%. These results highlight the superior performance of SHAP-GAN in handling high-dimensional and imbalanced datasets. Furthermore, SHAP-GAN significantly alleviates the challenges associated with intricate genetic data analysis, empowering medical professionals to tailor personalized treatment strategies for individual patients.
Keywords: ovarian cancer; feature selection; extreme gradient boosting algorithm; generative adversarial networks; SHAP (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/5/882/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/5/882/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:5:p:882-:d:1606899
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().