Optimal Consumption, Leisure, and Investment with Partial Borrowing Constraints over a Finite Horizon
Geonwoo Kim and
Junkee Jeon ()
Additional contact information
Geonwoo Kim: School of Natural Sciences, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
Junkee Jeon: Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Republic of Korea
Mathematics, 2025, vol. 13, issue 6, 1-13
Abstract:
We study an optimal consumption, leisure, and investment problem over a finite horizon in a continuous-time financial market with partial borrowing constraints. The agent derives utility from consumption and leisure, with preferences represented by a Cobb–Douglas utility function. The agent allocates time between work and leisure, earning wage income based on working hours. A key feature of our model is a partial borrowing constraint that limits the agent’s debt capacity to a fraction of the present value of their maximum future labor income. We employ the dual-martingale approach to derive the optimal consumption, leisure, and investment strategies. The problem reduces to solving a variational inequality with a free boundary, which we analyze using analytical and numerical methods. We provide an integral equation representation of the free boundary and solve it numerically via a recursive integration method. Our results highlight the impact of the borrowing constraint on the agent’s optimal decisions and the interplay between labor supply, consumption, and portfolio choice.
Keywords: optimal consumption; labor–leisure choice; portfolio selection; borrowing constraints; free boundary problem (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/6/989/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/6/989/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:6:p:989-:d:1614552
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().