EconPapers    
Economics at your fingertips  
 

Maximum Principle-Preserving Computational Algorithm for the 3D High-Order Allen–Cahn Equation

Junseok Kim and Youngjin Hwang ()
Additional contact information
Junseok Kim: Department of Mathematics, Korea University, Seoul 02841, Republic of Korea
Youngjin Hwang: Department of Mathematics, Korea University, Seoul 02841, Republic of Korea

Mathematics, 2025, vol. 13, issue 7, 1-13

Abstract: We propose an unconditionally stable computational algorithm that preserves the maximum principle for the three-dimensional (3D) high-order Allen–Cahn (AC) equation. The presented algorithm applies an operator-splitting technique that decomposes the original equation into nonlinear and linear diffusion equations. To guarantee the unconditional stability of the numerical solution, we solve the nonlinear equation using the frozen coefficient technique, which simplifies computations by approximating variable coefficients by constants within small regions. For the linear equation, we use an implicit finite difference scheme under the operator-splitting method. To validate the efficiency of the proposed algorithm, we conducted several computational tests. The numerical results confirm that the scheme achieves unconditional stability even for large time step sizes and high-order polynomial potential. In addition, we analyze motion by mean curvature in three-dimensional space and show that the numerical solutions closely match the analytical solutions. Finally, the robustness of the method is evaluated under noisy data conditions, and its ability to accurately classify complex data structures is demonstrated. These results confirm the efficiency and reliability of the proposed computational algorithm for simulating phase-field models with a high-order polynomial potential.

Keywords: frozen coefficient method; operator-splitting method; data classification (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/7/1085/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/7/1085/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:7:p:1085-:d:1620992

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1085-:d:1620992