EconPapers    
Economics at your fingertips  
 

Brauer Analysis of Thompson’s Group F and Its Application to the Solutions of Some Yang–Baxter Equations

Agustín Moreno Cañadas (), José Gregorio Rodríguez-Nieto, Olga Patricia Salazar-Díaz, Raúl Velásquez and Hernán Giraldo
Additional contact information
Agustín Moreno Cañadas: Departamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404, Kra 30 No 45-03, Bogotá 11001000, Colombia
José Gregorio Rodríguez-Nieto: Departamento de Matemáticas, Universidad Nacional de Colombia, Kra 65 No 59A-110, Medellín 050034, Colombia
Olga Patricia Salazar-Díaz: Departamento de Matemáticas, Universidad Nacional de Colombia, Kra 65 No 59A-110, Medellín 050034, Colombia
Raúl Velásquez: Instituto de Matemáticas, Universidad de Antioquia, Calle 67 No 53-108, Medellín 050010, Colombia
Hernán Giraldo: Instituto de Matemáticas, Universidad de Antioquia, Calle 67 No 53-108, Medellín 050010, Colombia

Mathematics, 2025, vol. 13, issue 7, 1-23

Abstract: The study of algebraic invariants associated with Brauer configuration algebras induced by appropriate multisets is said to be a Brauer analysis of the data that define the multisets. In general, giving an explicit description of such invariants as the dimension of the algebras or the dimension of their centers is a hard problem. This paper performs a Brauer analysis on some generators of Thompson’s group F . It proves that such generators and some appropriate Christoffel words induce Brauer configuration algebras whose dimensions are given by the number of edges and vertices of the binary trees defining them. The Brauer analysis includes studying the covering graph induced by a corresponding quiver; this paper proves that these graphs allow for finding set-theoretical solutions of the Yang–Baxter equation.

Keywords: Brauer configuration algebra; Brauer analysis; Christoffel word; path algebra; Thompson’s group; Yang–Baxter equation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/7/1127/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/7/1127/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:7:p:1127-:d:1623553

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1127-:d:1623553