EconPapers    
Economics at your fingertips  
 

Integrated Neural Network for Ordering Optimization with Intertemporal-Dependent Demand and External Features

Minxia Chen and Ke Fu ()
Additional contact information
Minxia Chen: Lingnan College, Sun Yat-sen University, Guangzhou 510275, China
Ke Fu: School of Business, Sun Yat-sen University, Guangzhou 510275, China

Mathematics, 2025, vol. 13, issue 7, 1-22

Abstract: This paper introduces an integrated inventory model that employs customized neural networks to tackle the challenge of non-stationary demand for newsvendor-type products, such as vegetables and fashion items. In this newsvendor context, demand is intertemporal-dependent and influenced by external factors such as prices, promotions, and holidays. Contrary to traditional machine-learning-based inventory models that assume stationary and independent demand, our method accounts for the temporal dynamics and the impact of external factors on demand. Our customized neural network model integrates demand estimation with inventory optimization, circumventing the potential suboptimality of sequential estimation and optimization methods. We conduct a case study on optimizing the vegetable ordering decisions for a supermarket. The findings indicate the proposed model’s effectiveness in enhancing ordering decisions, thereby reducing inventory costs by up to 21.14%. By customizing an integrated neural network, this paper presents a precise and cost-effective inventory management solution to address real-world complexities of demand, like seasonality and external factor dependency. The proposed approach is particularly beneficial for retailers in industries dealing with perishable items and market volatility, enabling them to mitigate waste (e.g., unsold vegetables) and stockouts (e.g., seasonal fashion items). This directly confronts challenges related to sustainability and profitability. Furthermore, the integrated framework provides a methodological inspiration for adapting neural networks to other time-sensitive supply chain problems.

Keywords: ordering optimization; non-stationary demand; external feature; integrated method; neural networks (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/7/1149/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/7/1149/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:7:p:1149-:d:1624919

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-01
Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1149-:d:1624919