Numerical Solution of the Nonlinear Convection–Diffusion Equation Using the Fifth Order Iterative Method by Newton–Jarratt
Santiago Quinga,
Wilson Pavon (),
Nury Ortiz,
Héctor Calvopiña (),
Gandhy Yépez and
Milton Quinga
Additional contact information
Santiago Quinga: Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171103, Ecuador
Wilson Pavon: Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Av. Mariscal Sucre, Quito 170129, Ecuador
Nury Ortiz: Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171103, Ecuador
Héctor Calvopiña: Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171103, Ecuador
Gandhy Yépez: Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171103, Ecuador
Milton Quinga: Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171103, Ecuador
Mathematics, 2025, vol. 13, issue 7, 1-20
Abstract:
This study presents a novel fifth-order iterative method for solving nonlinear systems derived from a modified combination of Jarratt and Newton schemes, incorporating a frozen derivative of the Jacobian. The method is applied to approximate solutions of the nonlinear convection–diffusion equation. A MATLAB script function was developed to implement the approach in two stages: first, discretizing the equation using the Crank–Nicolson Method, and second, solving the resulting nonlinear systems using Newton’s iterative method enhanced by a three-step Jarratt variant. A comprehensive analysis of the results highlights the method’s convergence and accuracy, comparing the numerical solution with the exact solution derived from linear parabolic partial differential transformations. This innovative fifth-order method provides an efficient numerical solution to the nonlinear convection–diffusion equation, addressing the problem through a systematic methodology that combines discretization and nonlinear equation solving. The study underscores the importance of advanced numerical techniques in tackling complex problems in physics and mathematics.
Keywords: convection–diffusion; Crank–Nicolson; Newton–Jarrat; iterative method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/7/1164/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/7/1164/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:7:p:1164-:d:1625773
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().