A New Family of Buckled Rings on the Unit Sphere
David A. Singer ()
Additional contact information
David A. Singer: Department of Mathematics, Applied Math & Statistics, Case Western Reserve University, Cleveland, OH 44106, USA
Mathematics, 2025, vol. 13, issue 8, 1-7
Abstract:
Buckled rings, also known as pressurized elastic circles, can be described as critical points for a variational problem, namely the integral of a quadratic polynomial in the geodesic curvature of a curve. Thus, they are a generalization of elastic curves, and they are solitary wave solutions to a flow in a (three-dimensional) filament hierarchy. An example of such a curve is the Kiepert Trefoil, which has three leaves meeting at a central singular point. Such a variational problem can be considered for curves in other surfaces. In particular, researchers have found many examples of such curves in a unit sphere. In this article, we consider a new family of such curves, having a discrete dihedral symmetry about a central singular point. That is, these are spherical analogues of the Kiepert curve. We determine such curves explicitly using the notion of a Killing field, which is a vector field along a curve that is the restriction of an isometry of the sphere. The curvature k of each such curve is given explicitly by an elliptic function. If the curve is centered at the south pole of the sphere and has minimum value ρ , then k − ρ is linear in the height above the pole.
Keywords: buckled ring; filament equation; soliton (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/8/1228/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/8/1228/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:8:p:1228-:d:1630900
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().