EconPapers    
Economics at your fingertips  
 

On the Total Version of Triple Roman Domination in Graphs

Juan Carlos Valenzuela-Tripodoro (), Maria Antonia Mateos-Camacho, Martin Cera and Maria Pilar Alvarez-Ruiz
Additional contact information
Juan Carlos Valenzuela-Tripodoro: Escuela Técnica Superior de Ingeniería de Algeciras, Universidad de Cádiz, 11202 Algeciras, Spain
Maria Antonia Mateos-Camacho: Escuela Internacional de Doctorado, Universidad de Sevilla, 41013 Sevilla, Spain
Martin Cera: Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, 41005 Sevilla, Spain
Maria Pilar Alvarez-Ruiz: Escuela Técnica Superior de Ingeniería de Algeciras, Universidad de Cádiz, 11202 Algeciras, Spain

Mathematics, 2025, vol. 13, issue 8, 1-19

Abstract: In this paper, we describe the study of total triple Roman domination. Total triple Roman domination is an assignment of labels from { 0 , 1 , 2 , 3 , 4 } to the vertices of a graph such that every vertex is protected by at least three units either on itself or its neighbors while ensuring that none of its neighbors remains unprotected. Formally, a total triple Roman dominating function is a function f : V ( G ) → { 0 , 1 , 2 , 3 , 4 } such that f ( N [ v ] ) ≥ | A N ( v ) | + 3 , where A N ( v ) denotes the set of active neighbors of vertex v , i.e., those assigned a positive label. We investigate the algorithmic complexity of the associated decision problem, establish sharp bounds regarding graph structural parameters, and obtain the exact values for several graph families.

Keywords: Roman domination; total Roman domination; triple Roman domination; total triple Roman domination (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/13/8/1277/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/8/1277/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:8:p:1277-:d:1633612

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-16
Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1277-:d:1633612