On the Total Version of Triple Roman Domination in Graphs
Juan Carlos Valenzuela-Tripodoro (),
Maria Antonia Mateos-Camacho,
Martin Cera and
Maria Pilar Alvarez-Ruiz
Additional contact information
Juan Carlos Valenzuela-Tripodoro: Escuela Técnica Superior de Ingeniería de Algeciras, Universidad de Cádiz, 11202 Algeciras, Spain
Maria Antonia Mateos-Camacho: Escuela Internacional de Doctorado, Universidad de Sevilla, 41013 Sevilla, Spain
Martin Cera: Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, 41005 Sevilla, Spain
Maria Pilar Alvarez-Ruiz: Escuela Técnica Superior de Ingeniería de Algeciras, Universidad de Cádiz, 11202 Algeciras, Spain
Mathematics, 2025, vol. 13, issue 8, 1-19
Abstract:
In this paper, we describe the study of total triple Roman domination. Total triple Roman domination is an assignment of labels from { 0 , 1 , 2 , 3 , 4 } to the vertices of a graph such that every vertex is protected by at least three units either on itself or its neighbors while ensuring that none of its neighbors remains unprotected. Formally, a total triple Roman dominating function is a function f : V ( G ) → { 0 , 1 , 2 , 3 , 4 } such that f ( N [ v ] ) ≥ | A N ( v ) | + 3 , where A N ( v ) denotes the set of active neighbors of vertex v , i.e., those assigned a positive label. We investigate the algorithmic complexity of the associated decision problem, establish sharp bounds regarding graph structural parameters, and obtain the exact values for several graph families.
Keywords: Roman domination; total Roman domination; triple Roman domination; total triple Roman domination (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/13/8/1277/pdf (application/pdf)
https://www.mdpi.com/2227-7390/13/8/1277/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:13:y:2025:i:8:p:1277-:d:1633612
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().